n-Butane conversion on sulfated zirconia: *in situ* ¹³C MAS NMR monitoring of the kinetics of the ¹³C-label scrambling and isomerization

A.G. Stepanov^{a,*}, M.V. Luzgin^a, S.S. Arzumanov^a, W. Wang^b, M. Hunger^b, and D. Freude^{c,*}

^aBoreskov Institute of Catalysis, prosp. Akad. Lavrentieva 5, Novosibirsk, 630090 Russia
 ^bInstitute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany
 ^cAbteilung Grenzflächenphysik, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany

Received 23 March 2004; accepted 11 January 2005

The kinetics of the conversion of 13 C-labeled n-butane adsorbed on sulfated zirconia (SZ) were monitored by in situ 13 C MAS NMR spectroscopy. Rate constants of n- to isobutane isomerization and of the 13 C-isotope scrambling from the primary to the secondary carbon atoms in n-butane were determined. The monomolecular scrambling of the 13 C-label in adsorbed n-butane has an activation energy of 17 ± 3 kcal mol^{-1} and occurs faster than the bimolecular process of n-butane isomerization which has an activation energy of 15.1 ± 0.2 kcal mol^{-1} . The transfer of the selective 13 C-label from the primary to the secondary carbon atom in the adsorbed n-butane seems to consist of two reaction steps: (i) a hydride abstraction by SZ leading to the formation of sec-butyl cations and (ii) a label scrambling in the sec-butyl cations. This two-step process with the formation of sec-butyl cations as intermediate increases the apparent activation energy for the 13 C-label scrambling, which is almost twice as large compared with the activation energy for carbon scrambling of sec-butyl cations in a superacidic solution.

KEY WORDS: hydrogen exchange; sulfated zirconia; ¹³C MAS NMR; *n*-butane conversion.

1. Introduction

The skeletal isomerization of alkanes plays an important role in industrial processes of petrochemistry as well as in fundamental studies of catalysis by solid superacids. Sulfated zirconia is a promising catalyst for the isomerization of linear alkanes, in order to produce high-octane-number clean fuels [1,2]. Two different mechanisms have been suggested for the isomerization of alkanes on SZ, one monomolecular [3,4] and the other bimolecular [4-6]. Recently published investigations of the ¹³C-label distribution in the reaction product isobutane [7,8] confirmed earlier suggestions [4–6] that a bimolecular reaction mechanism is realized for the conversion of *n*-butane on pure sulfated zirconia. On the contrary, for Pt–SZ catalysts and in the presence of H₂, a monomolecular mechanism was proposed [3,7,9]. By means of in situ NMR monitoring of the isomerization of ${}^{13}\text{C-labeled }n\text{-butane }([1-{}^{13}\text{C}]\text{-}n\text{-butane})$ on sulfated zirconia we observed a ¹³C-label scrambling in the initial n-butane [8] in agreement with Adeeva et al. [6] who applied GC-MS. This label scrambling shows the alkane activation on solid acids. NMR monitoring of the kinetics of the ¹³C-label scrambling were performed in the present study, in order to clarify the mechanism of the alkane activation on sulfated zirconia and the nature of the intermediates or transition states providing the scrambling of the skeletal carbon atoms.

2. Experimental section

2.1. Preparation of the samples

A sample of sulfated zirconia (SZ) consisting of the low temperature tetragonal phase with a surface area of 60 m² g⁻¹ and 9.9 wt% of SO₃ was synthesized according to the procedure described elsewhere [10]. ¹H MAS NMR spectroscopy gave a concentration of Brønsted acid sites of 50 μ mol g⁻¹ by comparing the intensity of the signal at 6.2 ppm due to acid sites with that of adsorbed propane as an internal standard. The SZ sample (90 mg), filled in a glass insert, was calcined at 873 K in air and at 673 K under vacuum ($p \le 10^{-3} \text{ Pa}$) for 2 h. Subsequently, $[1-^{13}C]$ -n-butane (300 μ mol g⁻¹) was adsorbed on SZ under vacuum and at the temperature of liquid nitrogen. After sealing the glass insert filled with the loaded SZ, the sample was kept at liquid nitrogen temperature. For the measurement of *n*-butane conversion the sample was taken from the liquid nitrogen, placed in the NMR probe, which was preheated to the temperature at which the reaction was studied (291-323 K).

2.2. NMR analysis

The reaction products of the conversion of *n*-butane on SZ in a sealed glass batch reactor were analyzed *in situ* by ¹³C MAS NMR spectroscopy. ¹³C NMR spectra were recorded with high-power proton decoupling and magic-angle spinning (MAS) at a resonance frequency of 100.613 MHz on a Bruker MSL-400

^{*}To whom correspondence should be addressed. E-mail: a.g.stepanov@catalysis.nsk.su, freude@uni-leipzig.de

spectrometer at temperatures of 291–323 K. The 13 C spins were excited with pulses of a flip angle of 45° corresponding to a pulse length of 2.5 μ s, and with a repetition time of 3–4 s thus avoiding relaxation effects by T_1 . The sample spinning rate was 2–3 kHz and 40–100 scans were collected for each spectrum. The chemical shifts of the 13 C nuclei in the adsorbed organic species were determined with respect to TMS as the external reference with accuracy ± 0.5 ppm. The accuracy of relative line positions was 0.10–0.15 ppm. $[1-^{13}$ C]-n-butane with one 13 C-labeled methyl group was prepared from $[1-^{13}$ C]-ethanol (13 C-isotopic enrichment of 99%) via a six-step process.

3. Results and discussion

Figure 1 shows the variation of the ¹³C MAS NMR spectrum of $[1-^{13}C]$ -n-butane adsorbed on SZ as a function of the heating time at the reaction temperature of 313 K. The first spectrum recorded at this temperature within 10 min shows a strong signal at 14.7 ppm due to the 13 C-labeled methyl groups of *n*-butane. The intensity of this signal decreases while another signal at 26.0 ppm increases. The signal at 26.0 ppm can be explained as a superposition of two signals due to ¹³C-labeled CH₃ and CH species in isobutane. Simultaneously, the intensity of the signal due to the CH₂ groups of *n*-butane at 27.0 ppm increases, passes a maximum after a time of 100 min and, subsequently, decreases. This variation of the intensity of the signal at 27.0 ppm as a function of time indicates that the ¹³C-label transfers from the methyl group into the methylene group of the adsorbed *n*-butane. Thus, two parallel reactions of *n*-butane adsorbed on SZ occur, i.e., isomerization and a label scrambling.

In figure 2, the relative intensities of the 13 C MAS NMR signals of the 13 C-labels in $[1-^{13}$ C]-n-butane (14.7 ppm), $[2-^{13}$ C]-n-butane (27.0 ppm), and isobutane (26.0 ppm) adsorbed on sulfated zirconia are plotted. The spectra were recorded as a function of time at temperatures of 291–323 K. The conversion of $[1-^{13}$ C]-n-butane on SZ can be described by the pathways shown in scheme 1. Here, A and B denote $[1-^{13}$ C]-n-butane and $[2-^{13}$ C]-n-butane, respectively, and C denotes a double 13 C-labeled isobutane [8].

Assuming that all the stages correspond to the first-order kinetics, the system of kinetic equations, equation (1), defines the variation of the 13 C-labels as a function of time. For A, B, and C denoting the quantities of $[1-^{13}$ C]-n-butane, $[2-^{13}$ C]-n-butane, and isobutane molecules adsorbed on SZ, respectively, we have [11]:

$$\frac{dA}{dt} = -(k_1 + k_2)A + k_1B + k_3C,
\frac{dB}{dt} = k_1A - (k_1 + k_2)B + k_3C,
\frac{dC}{dt} = k_2A + k_2B - 2k_3C.$$
(1)

The solution of the system of three differential equations is given in equation (2):

$$A(t) = \frac{k_3 a}{2k_3 + k_2} + \frac{k_2 a}{2(2k_3 + k_2)} \exp[-(2k_3 + k_2)t]$$

$$+ \frac{a}{2} \exp[-(2k_1 + k_2)t],$$

$$B(t) = \frac{k_3 a}{2k_3 + k_2} + \frac{k_2 a}{2(2k_3 + k_2)} \exp[-(2k_3 + k_2)t]$$

$$- \frac{a}{2} \exp[-(2k_1 + k_2)t],$$

$$C(t) = \frac{k_2 a}{2k_3 + k_2} - \frac{k_2 a}{2k_3 + k_2} \exp[-(2k_3 + k_2)t].$$

$$(2)$$

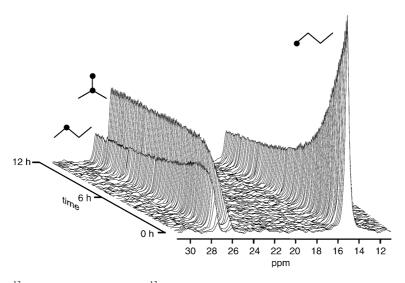


Figure 1. Stacked plot of the 13 C MAS NMR spectra of $[1-^{13}C]$ -n-butane adsorbed on sulfated zirconia recorded at 313 K after different heating times. The first spectrum (bottom) was recorded 10 min and the last 12 h after n-butane adsorption and the start of the heating. The time between subsequent spectra was 10 min.

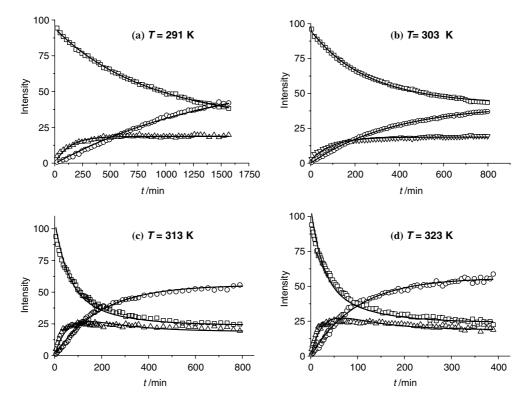
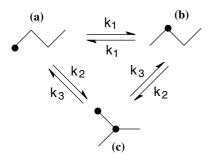


Figure 2. Relative 13 C MAS NMR intensities of the 13 C-labels in $[1^{-13}$ C]-*n*-butane at 14.7 ppm (\square), $[2^{-13}$ C]-*n*-butane at 27.0 ppm (Δ), and isobutane at 26.0 ppm (\bigcirc), adsorbed on sulfated zirconia. The spectra were recorded as a function of time at temperatures of 291 K (a), 303 K (b), 313 K (c), and 323 K (d). The solid lines represent fits of the experimentally obtained curves *via* equations (2) with the rate constants given in table 1.


Here a = A(0) is a normalization constant that corresponds to the quantity of adsorbed $[1^{-13}C]$ -n-butane or the initial intensity of the signal 14.7 ppm at the reaction time t = 0. The curves of the relative ¹³C MAS NMR intensities of the ¹³C-labels, shown in figure 2, were fitted according to equation (2) and with the rate constants given in table 1.

The Gibbs potential, $\Delta_r G$, and the reaction enthalpy, $\Delta_r H$, of the isomerization of n- to isobutane were estimated via the temperature dependence of the equilibrium constant $K=k_2/k_3$ and found to be (-0.7 ± 0.6) kcal mol⁻¹ and (-2.9 ± 0.6) kcal mol⁻¹, respectively. This is in a good agreement with literature data for this reaction $(\Delta_r G^{298} = -0.9 \text{ kcal mol}^{-1} \text{nd} \Delta_r H^{298} = -2.3 \text{ kcal mol}^{-1} 12]$). The agreement confirms

the validity of scheme 1 for the description of the conversion of *n*-butane on SZ.

Considering the experimental data obtained in the present work, the ¹³C-label scrambling rate in *n*-butane is higher than the rate of isomerization. Brouwer [13] found that the ¹³C-label scrambling in *n*-butane is an essentially more facile process than its isomerization to isobutane in liquid superacids (HF–SbF₅). Scrambling occurred with a rate similar to that of the isomerization of *n*-pentane and *n*-hexane, while *n*-butane did not isomerize to isobutane at all.

This was explained by the necessity of the formation of a primary carbenium ion acting as an intermediate or a transition state. The formation of this primary carbenium ion is characterized by a higher energy barrier

Scheme 1. (Black dots in the scheme denote the ¹³C label).

Table 1

Rate constants for the 13 C-label scrambling (k_1) in n-butane and the isomerization of n- to isobutane (k_2) and iso- to n-butane (k_3) on sulfated zirconia, derived from in situ 13 C MAS NMR investigations of the reaction kinetics under the conditions of a batch reactor

Temperature, K	$k_1 \times 10^3 \text{ min}^{-1}$	$k_2 \times 10^3 \text{ min}^{-1}$	$k_3 \times 10^3 \text{ min}^{-1}$
291	1.04 ± 0.06	0.43 ± 0.02	0.11 ± 0.03
303	1.7 ± 0.15	1.3 ± 0.1	0.41 ± 0.05
313	7.6 ± 0.4	2.9 ± 0.1	$1.2~\pm~0.1$
323	$17.0~\pm~1.5$	$5.6~\pm~0.2$	$2.3~\pm~0.3$

than the formation of a secondary carbenium ion, which is necessary for the ¹³C-label scrambling in *n*-butane or isomerization of *n*-pentane. At the same time, the isomerization of *n*- to isobutane and the ¹³C-label scrambling in these compounds have been found to proceed at the same rates in the presence of a promoted aluminum bromide catalyst [14]. A possible explanation of the different kinetics in HF–SbF₅ and on aluminum halide catalysts is that an intramolecular reaction mechanism is involved in the former case and a bimolecular reaction mechanism is realized in the latter case [13].

In the present experiments on SZ, the higher rate constant for the ¹³C-label scrambling compared to that for isomerization can be explained in a similar way as for superacidic solutions. The necessity to form a high-energetic primary isobutyl cation as intermediate or transition state during the isomerization of *n*- to isobutane *via* a monomolecular mechanism provides a possible explanation for the low rate constant in comparison with the ¹³C-label scrambling in the initial *n*-butane [13]. However, it was unequivocally demonstrated in several studies that *n*-butane isomerizes on SZ *via* a bimolecular mechanism [6–8]. This implies that on SZ the monomolecular label scrambling in *n*-butane is faster than the bimolecular isomerization of *n*- to isobutane.

Figure 3 shows how the apparent activation energies were determined from an Arrhenius plot of the rate constants at various reaction temperatures. The activation energy for the isomerization of n- to isobutane of 15.1 kcal mol⁻¹s in good agreement with the value of $E_a = 14.0$ kcal mol⁻¹ published earlier for the bimolecular mechanism [15,16]. Matsuhashi *et al.* [4] have estimated an activation energy of 13.0 kcal mol⁻¹ in the induction period of the isomerization of n- to isobutane,

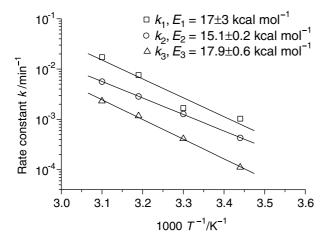


Figure 3. Arrhenius plot of the rate constants k of the 13 C-label scrambling in n-butane (\square) and of the isomerization of n- to isobutane (\square) and iso- to n-butane (Δ) on sulfated zirconia given in table 1.

i.e., before products of an *n*-butane disproportionation (propane and pentanes) appear. Therefore, they assigned this value to the activation energy of the monomolecular isomerization of *n*-butane. However, isobutane was the only reaction product after 1 h reaction at 293 K, and an analysis of the ¹³C-label distribution in isobutane indicated the presence of two ¹³C-labels in the isobutane molecule which is formed by the conversion of single ¹³C-labeled *n*-butane [8]. This implies that the activation energy estimated by Matsuhashi *et al.* [4] corresponds to the bimolecular isomerization of *n*-butane. The apparent activation energy expected for the monomolecular isomerization of *n*- to isobutane is about 30 kcal mol⁻¹17].

The kinetic data obtained in the present work indicate that the ¹³C-label scrambling in *n*-butane occurs with an activation energy of 17 kcal mol⁻¹ (figure 3). This ¹³C-label scrambling in *n*-butane adsorbed on SZ was shown to occur as an intramolecular process [6,8]. In superacidic solutions, the ¹³C-label scrambling occurs in sec-butyl carbenium ions formed from n-butane via the formation of protonated cyclopropane as an intermediate or transition state. In this respect, the observation of the ¹³C-label scrambling in *n*-butane adsorbed on SZ by a monomolecular mechanism is indicative of the formation of a sec-butyl carbenium ion as intermediate or transition state on SZ, similar to this process in superacidic solutions. Indeed, there is so far no alternative mechanism for the ¹³C-label scrambling in alkanes or olefins, except for the scrambling in the carbenium ions formed from either alkane or olefin.

The activation energy of the ¹³C-label scrambling in sec-butyl cation in superacidic solutions was found to be 7.5 kcal mol⁻¹ [18]. A higher activation energy for the ¹³C-label scrambling in *n*-butane adsorbed on SZ may imply that a stage of hydride abstraction from *n*-butane by SZ to form sec-butyl cation is responsible for the increase of the apparent activation energy of the scrambling. Indeed, the activation energy for the hydride abstraction reaction for alkanes in superacidic solutions may reach 17 kcal mol⁻¹ [19]. Alternatively, both hydride abstraction with an activation energy of 13-14 kcal mol⁻¹, as in superacidic solutions[19,20], and the ¹³C-label scrambling in sec-butyl cations may contribute to the apparent activation energy of 17 kcal mol^{-1} or the ¹³C-label scrambling *n*-butane adsorbed on SZ.

4. Conclusions

The *in situ* ¹³C MAS NMR monitoring of the kinetics of the conversion of ¹³C-labeled *n*-butane adsorbed on sulfated zirconia allows the estimation of both the rate constants for isomerization of *n*- to isobutane and the ¹³C-label scrambling in *n*-butane from primary to secondary carbon atoms. The monomolecular scrambling

of the ¹³C-label in adsorbed *n*-butane has an activation energy of 17 kcal mol⁻¹ and occurs faster than the bimolecular process of *n*-butane isomerization which has an activation energy of 15.1 kcal mol⁻¹. The ¹³C label scrambling in *n*-butane adsorbed on sulfated zirconia suggests the formation of *sec*-butyl cations as intermediates or transition states providing the label scrambling. Two successive stages of the reaction, namely a hydride abstraction by the sulfated zirconia leading to the formation of *sec*-butyl cations and the ¹³C-label scrambling in the formed cations seem to control the apparent activation energy of the ¹³C-label scrambling, which is more than twice as high as the activation energy for the carbon scrambling in *sec*-butyl cations in superacidic solutions.

Acknowledgments

The authors thank Dr. V.P. Schmachkova and Dr. N.S. Kotsarenko for providing the samples of sulfated zirconia. We are grateful to Prof. Dr. Douglas M. Ruthven for advice. M.V. Luzgin acknowledges the Siberian Branch of the Russian Academy of Sciences and Russian Science Support Foundation for financial support. This work was supported by the NATO Collaborative Linkage Grant (PST.CLG.979335), Russian Foundation by Basic Research (grant no. 04–03-32372) and the Deutsche Forschungsgemeinschaft, project FR 902/15.

References

- [1] X. Song and A. Sayari, Catal. Rev. -Sci. Eng. 38 (1996) 329.
- [2] G.D. Yadav and J.J. Nair, Micropor. Mesopor. Mater. 33 (1999) 1.
- [3] F. Garin, L. Seyfried, P. Girard, G. Maire, A. Abdulsamad and J. Sommer, J. Catal. 151 (1995) 26.
- [4] H. Matsuhashi, H. Shibata, H. Nakamura and K. Arata, Appl. Catal. A 187 (1999) 99.
- [5] V. Adeeva, G.D. Lei and W.M.H. Sachtler, Appl. Catal. A 18 (1994) L11.
- [6] V. Adeeva, G.D. Lei and W.M.H. Sachtler, Catal. Lett. 33 (1995) 135.
- [7] T. Suzuki and T. Okuhara, Catal. Lett. 72 (2001) 111.
- [8] M.V. Luzgin, S.S. Arzumanov, V.P. Shmachkova, N.S. Kotsarenko, V.N. Rogov and A.G. Stepanov, J. Catal. 220 (2003) 233.
- [9] J. Sommer, R. Jost and M. Hachoumy, Catal. Today. 38 (1997) 309.
- [10] V.M. Mastikhin, A.V. Nosov, S.V. Filimonova, V.V. Terskikh, N.S. Kotsarenko, V.P. Shmachkova and V.I. Kim, J. Mol. Catal. A 101 (1995) 81.
- [11] O. Levenspiel, Chemical Reaction Engineering (Wiley, New York, London, 1962) 9.
- [12] A.A. RavdelA.M. Ponomareva(.), Handbook for Physical and Chemical Values (Khimia, Leningrad, 1983).
- [13] D.M. Brouwer, Rec. Trav. Chim. Pays Bas 87 (1968) 1435.
- [14] J.W. Otvos, D.P. Stevenson, C.D. Wagner and O. Beeck, J. Chem. Phys. 16 (1948) 745.
- [15] K. Na, T. Okuhara and M. Misono, J. Chem. Soc. Faraday Trans. 91 (1995) 367.
- [16] A.S. Zarkalis, C.Y. Hsu and B.C. Gates, Catal. Lett. 37 (1996) 1.
- [17] M. Boronat, P. Viruela and A. Corma, J. Phys. Chem. A 102 (1998) 982.
- [18] M. Saunders, E.L. Hagen and J. Rosenfeld, J. Am. Chem. Soc. 90 (1968) 6882.
- [19] D.M. Brouwer and H. Hogeveen, Progr. Phys. Org. Chem. 9 (1972) 179.
- [20] D.M. Brouwer and J.M. Oelderik, Rec. Trav. Chim. Pays Bas 87 (1968) 721.